

ARF466FL

RF POWER MOSFETs

N-CHANNEL ENHANCEMENT MODE

200V 300W 45MHz

The ARF466FL is a rugged high voltage RF power transistor designed for scientific, commercial, medical and industrial RF power amplifier applications up to 45 MHz. It has been optimized for both linear and high efficiency classes of operation.

- Specified 150 Volt, 40.68 MHz Characteristics:
 - Output Power = 300 Watts.
 - Gain = 16dB (Class AB)
 - Efficiency = 75% (Class C)

- Low Cost Flangeless RF Package.
- Low Vth thermal coefficient.
- Low Thermal Resistance.
- Optimized SOA for Superior Ruggedness.

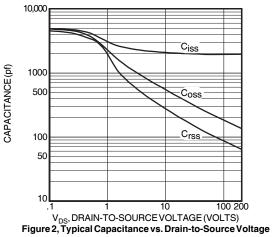
MAXIMUM RATINGS

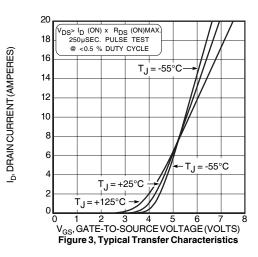
All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

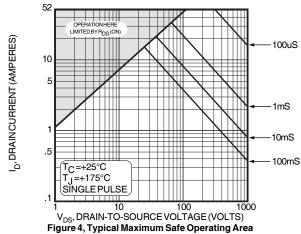
Symbol	Parameter	ARF466FL	UNIT	
V _{DSS}	Drain-Source Voltage	1000	Volts	
V_{DGO}	Drain-Gate Voltage	1000	Voits	
I _D	Continuous Drain Current @ T _C = 25°C	13	Amps	
V _{GS}	Gate-Source Voltage	±30	Volts	
P_{D}	Total Power Dissipation @ T _C = 25°C	450	Watts	
$R_{\theta JC}$	Junction to Case	0.30	°C/W	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 175	- °C	
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300		

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions		TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250 \mu A)$	1000			Volts
R _{DS(ON)}	Drain-Source On-State Resistance $(V_{GS} = 10V, I_D = 6.5A)$		0.90	ohms	
I _{DSS}	Zero Gate Voltage Drain Current (V _{DS} = 1000V, V _{GS} = 0V)			25	
	Zero Gate Voltage Drain Current ($V_{DS} = 800V$, $V_{GS} = 0V$, $T_{C} = 125$ °C)			250	μA
I _{GSS}	Gate-Source Leakage Current $(V_{GS} = \pm 30V, V_{DS} = 0V)$			±100	nA
g _{fs}	Forward Transconductance (V _{DS} = 25V, I _D = 6.5A)	3.3	7	9	mhos
V _{GS} (TH)	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 1 \text{mA})$	2		4	Volts

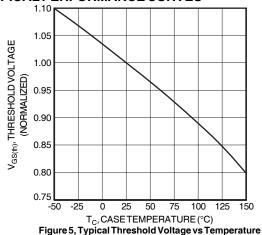

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

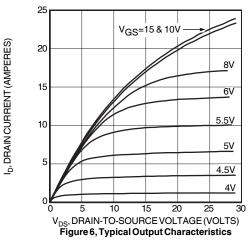

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		2000		
C _{oss}	Output Capacitance	V _{DS} = 150V		165		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		75		
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		12		
t _r	Rise Time	V _{DD} = 500 V		10		ns
t _{d(off)}	Turn-off Delay Time	I _D = 13A @ 25°C		43		113
t _f	Fall Time	$R_{G} = 1.6\Omega$	-	10		

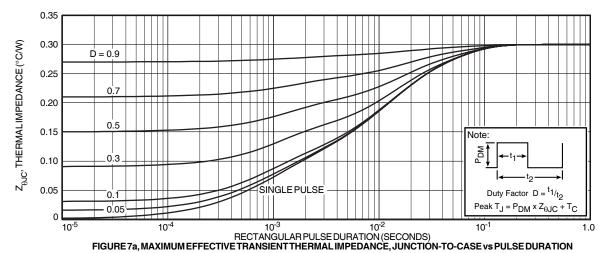

FUNCTIONAL CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
G _{PS}	Common Source Amplifier Power Gain	f = 40.68 MHz	14	16		dB
η	Drain Efficiency	$V_{GS} = 2.5V$ $V_{DD} = 150V$	70	75		%
Ψ	Electrical Ruggedness VSWR 10:1	P _{out} = 300W	No Degradation in Output Power			

¹ Pulse Test: Pulse width < 380µS, Duty Cycle < 2%

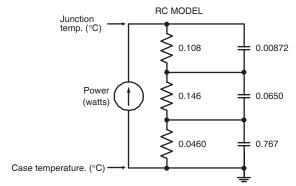






APT Reserves the right to change, without notice, the specifications and information contained herein.

TYPICAL PERFORMANCE CURVES



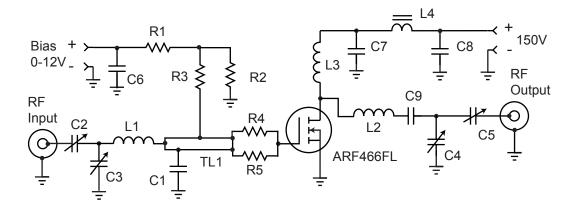

Figure 7b, TRANSIENT THERMAL IMPEDANCE MODEL

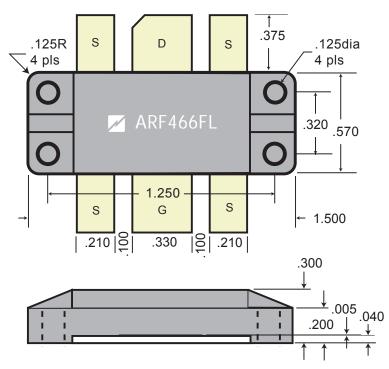
Table 1 - Typical Class AB Large Signal Input - Output Impedance

Freq. (MHz)	$Z_{IN}\left(\Omega\right)$	$Z_{OL}\left(\Omega\right)$
2.0	18 - j 11	30 - j 1.7
13.5	1.3 - j 5	25.7 - j 9.8
27.1	.40 - j 2.6	18 - j 13.3
40.7	.20 - j 1.6	12 - j 12.6
65	.11 + j 0.6	6.2 - j 8.9

 Z_{in} - Gate shunted with 25 Ω I_{DQ} = 100mA Z_{OL} - Conjugate of optimum load for 300 W output at V_{dd} = 150V

40.68 MHz Test Circuit

C1 -- 2200pF ATC 700B C2-C5 -- Arco 465 Mica trimmer C6-C8 -- .1mF 500V ceramic chip C9 -- 3x 2200pF 500V chips COG L1 -- 3t #22 AWG $\,$.25"ID $\,$.25 "L \sim 55nH


L2 -- 5t #16 AWG .312" ID .35"L ~176nH

L3 -- 10t #24 AWG .25"ID ~.5uH

L4 -- VK200-4B ferrite choke 3uH

R1- R3 -- $1k\Omega$ 0.5W R4- R5 -- 1Ω 1W SMT TL1 -- 40Ω t-line 0.15 x 2" C1 is ~1.75" from R4-5.

T3 Package Outline

Thermal Considerations and Package Mounting:

The rated power dissipation is only available when the package mounting surface is at 25°C and the junction temperature is 175°C. The thermal resistance between junctions and case mounting surface is 0.3°C/W. When installed, an additional thermal impedance of 0.1°C/W between the package base and the mounting surface is typical. Insure that the mounting surface is smooth and flat. Thermal joint compound must be used to reduce the effects of small surface irregularities. Use the minimum amount necessary to coat the surface. The heatsink should incorporate a copper heat spreader to obtain best results.

The package design clamps the ceramic base to the heatsink. A clamped joint maintains the required mounting pressure while allowing for thermal expansion of both the base and the heat sink. Four 4-40 (M3) screws provide the required mounting force. Torque the mounting screws to 6 in-lb (0.68 N-m).